Appendix E: Forecast Error and Compact Rules
The individual rules in the URGWOM ruleset are discussed separately and are grouped based on policy group. The two sections in this appendix are associated with Forecast Error and Rio Grande Compact Policy Groups respectively. The rules fire in reverse order within URGWOM, so the discussion of the policy groups begins with the Forecast Error Policy Group and then moves to the Rio Grande Compact rules.
The discussion for each rule includes a description of the rule including an explanation of the Rule Logic, a list of slots in the model associated with the rule, a log of when and how the rule was last modified, a view of the actual RiverWare rule code, a list of Execution Constraints, and a list of functions referenced in the rule. These items are stored within the ruleset itself and this appendix is generated automatically from that ruleset so that updates to rule documentation can be easily added whenever a rule is updated.
[image: Control Display Icon]1 [image: RPL Object Icon]ForecastErrors
The rules in this policy group are used to compute a percent forecast error for each month with reference to estimated inflows to El Vado Reservoir. If the rules are turned on, the computed forecast error is then used to incorporate uncertainty in forecasted flows within a simulation. The computed forecast error, not to exceed input maximums, is referenced in other rules including the calculation of a forecasted Otowi flow volume. These rules have been turned off for recent URGWOM applications and is meant to be only turned on for Planning applications, so that there is not perfect knowledge of inflows into the system during model runs.
Rules in the Group:
ForecastErrorPercent
CalculatedForecastError
RewindRandomFile
Policy Group Change Log (newest changes at the top):
Date: Who. What
2/13/2019: Jesse Roach. Added Group Description and Group Notes
[image: Control Display Icon]1.1 [image: RPL Object Icon]RewindRandomFile
Rule Purpose:
This rule rewinds the random number file. The seed for the random number generator is constant so that simulations can be regenerated if needed. Refer to the discussion of the predefined ResetRanDev function in the RiverWare online help for further discussion of the random number generator.
Rule Logic: Execution Constraint logic is at end of explanation.
This rule calls the predefined function ResetRanDev. The function is imbedded in a Print statement, so note that it will not execute if the diagnostics are turned off.
This rule fires only at the starting timestep
Comment:
Jesse Roach 2/12/2019. I don't think October 31, 1983 needs to be skipped, guessing instead that this rule is just a direct copy of the example use of the rule in the documentation.
Model slots written by rule:
None
List of key model objects with slots read by the rule or child functions:
None
Log of when and how the rule has been modified (newest changes at the top):
Date: Who. What
2/12/19: Jesse Roach. Added description and notes fields.
Statements
[image: Statements]
Execution Constraint
[image: Execution Constraint]
Referenced Functions
· [image: RPL Object Icon]ResetRanDev
[image: Control Display Icon]1.2 [image: RPL Object Icon]CalculatedForecastError
Rule Purpose:
This rule is set up to set a randomly generated forecast error within a maximum range. This rule computes a forecast error using a random number generator. The forecast error is then used to compute a percent forecast error.
Rule Logic: Execution Constraint logic is at end of explanation.
If the current timestep is the first day of a month and the forecast error for the end of the current month is a NaN as set to the ForecastError time series slot in the ForecastData data object, the rule fires. The ComputeForecastError function in the ComputedForecastError utility group is used to compute the forecast error using different methods depending on the month. Up to May, the error is computed as a function of input coefficients, the estimated inflow to El Vado Reservoir, the previous forecast error, and a random number. The forecast error in June is set to half the forecast error for May, and the forecast error in July is set to a quarter of the forecast error for June. During the remaining months, it is set to zero. Within the rule, the results from the ComputeForecastError function are then checked against input maximum forecast errors for each month for El Vado Reservoir with consideration for the sign of the error. If the maximum is exceeded, the forecast error is reset to the maximum with consideration for the sign.
This rule fires at the start of each month if there is no end-of-month Forecast Error already assigned
Comment:
Jesse Roach: 2/12/19:
The rule takes advantage of the fact that according to RPL documentation, functions with no arguments are actually evaluated only once per rule and return this same result on each function call during the execution of that block. Otherwise this rule would need a WITH function to make sure the forecast error was the same in all calls to the ComputeForecastError function.
Previous comment "Random numbers are currently from a file generated by an old CRSS function." Unsure if that is still true.
Model slots written by rule:
1. ForecastData.ForecastError
List of key model objects with slots read by the rule or child functions: 1. ForecastData.MaximumForecastError
2. ForecastData.ForecastError (value in previous month)
3. ForecastData.ForecastCoefficients
Log of when and how the rule has been modified (newest changes at the top):
Date: Who. What
2/12/19: Jesse Roach. Added description and notes fields.
Statements
[image: Statements]
Execution Constraint
[image: Execution Constraint]
Referenced Functions
· [image: RPL Object Icon]ComputeForecastError
· [image: RPL Object Icon]EndOfMonth
· [image: RPL Object Icon]IsFirstTimestepOfMonth
· [image: RPL Object Icon]Abs
· [image: RPL Object Icon]GetMonthAsString
[image: Control Display Icon]1.3 [image: RPL Object Icon]ForecastErrorPercent
Rule Purpose:
This rule computes a percent forecast error from the forecast error calculated with the CalculatedForecastError Rule. The percent forecast error is used later when forecasting river flows at Otowi or inflows to Abiquiu Reservoir.
Rule Logic: Execution Constraint logic is at end of explanation.
The percent forecast error is computed differently depending on the month. Through July, the percent forecast error is the lesser of the forecast error divided by the estimated inflow to El Vado Reservoir and the input maximum percent forecast error with consideration for the sign. If the estimated inflow to El Vado Reservoir is zero, the percent forecast error is set to 0.10. During other months, if it is the first year of the simulation, the percent forecast error is set to 0.04, and if it is not the first year of the simulation, the percent forecast error is set to the lesser of 0.1 or the computed percent forecast error for July of the current year.
This rule fires at the start of each month if there is no end-of-month Forecast Error already assigned
Comment:
Jesse Roach 2/12/2019: If this rule is used again, add a WITH for EstimateElVadoInflow, and perhaps redo logic to only calculate the percentage once rather than twice.
Model slots written by rule:
1. ForecastData.PercentForecastError
List of key model objects with slots read by the rule or child functions:
1. ForecastData.MaxPercentForecastError
2. ForecastData.ForecastError
3. ForecastData.PercentForecastError (for previous months)
Log of when and how the rule has been modified (newest changes at the top):
Date: Who. What
2/12/19: Jesse Roach. Added description and notes fields.
Statements
[image: Statements]
Execution Constraint
[image: Execution Constraint]
Referenced Functions
· [image: RPL Object Icon]EstimateElVadoInflow
· [image: RPL Object Icon]EndOfMonth
· [image: RPL Object Icon]IsFirstTimestepOfMonth
· [image: RPL Object Icon]Min
· [image: RPL Object Icon]Max
· [image: RPL Object Icon]GetMonth
· [image: RPL Object Icon]GetYear
[image: Control Display Icon]2 [image: RPL Object Icon]Rio Grande Compact Accounting
[image: Control Display Icon]2.1 [image: RPL Object Icon]ComputeUsableStorage
Rule Purpose:
This rule computes the usable storage to be referenced by the SetCompactArticleVIISwitch rule when identifying whether the stipulations of Article VII of the Compact are in effect. Usable storage is computed as the total storage at Elephant Butte and Caballo Reservoirs minus any credit water for New Mexico and Colorado and minus San Juan-Chama Project water including water in the Albuquerque, Santa Fe City, Reclamation, and Combined accounts. Note that the storage in the Compact credit accounts is only subtracted if the account storage is positive and based on the credit amount as of December 31st of the previous year (i.e. any tracked Compact debt as negative account storage is not considered in the calculation and any year-to-date evaporative losses to the Compact accounts is not subtracted). Also, the usable storage is immediately adjusted for any relinquished credit (i.e. the transfer of water from the NMCredit account to Rio Grande storage as a result of relinquished credits). The result is recorded to a series slot that can be reviewed from any simulation.
Rule Logic: Execution Constraint logic is at end of explanation.
The value for the UsableStorage time series slot in the RioGrandeCompact data object for the current timestep is set to the value for the Storage at Elephant Butte Reservoir at the end of the previous timestep minus the storage in the NMCredit and COCredit storage accounts at Elephant Butte Reservoir on December 31st of the previous year (or the initial timestep if that is more recent), if the corresponding Compact credit account storage on that date is greater than 0.0 acre-ft as assured with the predefined Max function. Also, any relinquished credit in the RelinquishedNMCredits series slot in the RelinquishedCreditsEmergencyDroughtWater data object is added if the current timestep is after the relinquishment date as identified with the user-defined RelinquishmentDate function. Any San Juan-Chama Project storage at the previous timestep is subtracted as computed with reference to the Albuquerque, SantaFeCity, Combined, and Reclamation storage accounts at the previous timestep. The value for the storage at Caballo Reservoir at the previous timestep is also added.
The rule fires if the UsableStorage value is not defined
Model slots written by rule:
1. RioGrandeCompact.UsableStorage
List of key model objects with slots read by the rule or child functions:
1. ElephantButte (Level Power Reservoir Object)
2. Caballo (Storage Reservoir Object)
3. RelinquishedCreditsEmergencyDroughtWater (Data Object)
Log of when and how the rule has been modified (newest changes at the top):
Date: Who. What
2/12/19: Jesse Roach. Added description and notes fields.
Statements
[image: Statements]
Execution Constraint
[image: Execution Constraint]
Referenced Functions
· [image: RPL Object Icon]RelinquishmentDate
· [image: RPL Object Icon]ModelRelinquishedCredits
· [image: RPL Object Icon]Max
[image: Control Display Icon]2.2 [image: RPL Object Icon]SetCompactArticleVIISwitch
Rule Purpose:
This rule sets a flag to indicate whether Article VII of the Compact is in effect for the current timestep. Article VII is in effect if the usable storage at Elephant Butte and Caballo Reservoir is less than 400,000 acre-ft. Article VII is particularly significant because native water cannot be stored in any of the reservoirs upstream of Elephant Butte currently modeled in URGWOM if Article VII is in effect.
Rule Logic: Execution Constraint logic is at end of explanation.
If the value for the UsableStorage time series slot in the RioGrandeCompact data object for the previous timestep is less than the minimum storage input to the MinUsableStorageToAvoidArticleVIIRestrictions table slot in the RioGrandeCompact data object (400,000 acre-ft), the value for the switch is set to 1.0. Otherwise, the value is set to zero. The result is recorded to the ArticleVIISwitch time series slot in the RioGrandeCompact data object for the current timestep. The input minimum storage is referenced with the user-defined CompactMinStorage function. An identical assignment statement is included to be applied at the Start Timestep for specifically setting the value for the Initial Timestep if a value was not input.
This rule fires if the value in the RioGrandeCompact.ArticleVIISwitch time series slot is a NaN for the current timestep.
Model slots written by rule:
1. RioGrandeCompact.ArticleVIISwitch
List of key model objects with slots read by the rule or child functions:
1. RioGrandeCompact (Data Object)
Log of when and how the rule has been modified (newest changes at the top):
Date: Who. What
2/12/19: Jesse Roach. Added description and notes fields.
Statements
[image: Statements]
Execution Constraint
[image: Execution Constraint]
Referenced Functions
· [image: RPL Object Icon]CompactMinStorage
· [image: RPL Object Icon]RunStartDate
[image: Control Display Icon]2.3 [image: RPL Object Icon]SetAvgNambeFallsDataForRGCompactCalcs
Rule Purpose:
This rule uses synthetic values for the San Juan-Chama use above Otowi and the Return Flow Credit Pojoaque Unit as needed for Compact calculations if values were not directly input. Warning messages are displayed in diagnostics reminding the model user that it is preferable for data to be estimated and imported, so that averages would not be required.
Rule Logic: Execution Constraint logic is at end of explanation.
This rule sets the UseAboveOtowiPeriodic and ReturnFlowCreditPojoaqueUnitPeriodic times series slots on the RioGrandeCompact data object equal to the values in the UseAboveOtowi and ReturnFlowCreditPojoaqueUnit periodic slots, respectively, on the RioGrandeCompact data object, if these time series slots haven't already been input. The assignments are made from the start timestep through end of the run.
This rule also prints warning messages to diagnostics if these two time series slots haven't already been input, warning that they were "NOT directly input, so average monthly uniform flows will be used."
This rule also prints a warning message to diagnostics if the Gage Inflow at Otowi hasn't been input back to the beginning of the year, warning that "Not all data is available to sum back to beginning of year for Rio Grande Compact numbers".
This rule fires on the first timestep of the run if the UseAboveOtowi and Return Flow CreditPojoaqueUnit slots contain NaNs
Comment:
2/12/2019 Jesse Roach: This rule is really an initialization rule, but left here because it relates to the RG Compact.
This rule uses synthetic values for the San Juan-Chama use above Otowi and the Return Flow Credit Pojoaque Unit as needed for Compact calculations if values were not directly input. It is preferred that data be estimated and imported or Nambe computations be included in future versions of the model, so that averages would not be required.
Model slots written by rule:
1. RioGrandeCompact.UseAboveOtowi
2. RioGrandeCompact.ReturnFlowCreditPojoaqueUnit
List of key model objects with slots read by the rule or child functions:
1. Otowi.Gage Inflow
2. RioGrandeCompact.UseAboveOtowiPeriodic
3. RioGrandeCompact.ReturnFlowCreditPojoaqueUnitPeriodic
Log of when and how the rule has been modified (newest changes at the top):
Date: Who. What
2/12/19: Jesse Roach. Added description and notes fields.
11/10/17: Updated during timestep generalization of MRG rules
Statements
[image: Statements]
Execution Constraint
[image: Execution Constraint]
Referenced Functions
· [image: RPL Object Icon]NaNInSlot
· [image: RPL Object Icon]FirstTimestepOfYear
· [image: RPL Object Icon]UseAverageMessage
· [image: RPL Object Icon]RunStartDate
· [image: RPL Object Icon]RunEndDate
[image: Control Display Icon]2.4 [image: RPL Object Icon]ZeroCreditsForElephantButteSpill
Rule Purpose:
This rule executes if Elephant Butte is spilling as indicated by RioGrandeCompact.EBSpill series slot. If a spill is occurring, accounting supplies are set to reset the New Mexico and Colorado Compact credits to zero.
Rule Logic: Execution Constraint logic is at end of explanation.
This rule has four assignments. In the first assignment, if not already computed, the NMCreditElephantButteToRioGrandeElephantButte.Supply on the previous timestep is set equal to the previous storage in the NMCredit account on Elephant Butte if the storage in this account was larger than or equal to 0 acre-feet. Otherwise, the supply is set equal to 0 cfs.
In the second assignment, if not already computed, the RioGrandeElephantButteToNMCreditElephantButte.Supply on the previous timestep is set equal to the negative of the previous storage in the NMCredit account on Elephant Butte if the storage in this account was smaller than 0 acre-feet. Otherwise, the supply is set equal to 0 cfs.
In the third assignment, if not already computed, the COCreditElephantButteToRioGrandeElephantButte.Supply on the previous timestep is set equal to the previous storage in the COCredit account on Elephant Butte if the storage in this account was larger than or equal to 0 acre-feet. Otherwise, the supply is set equal to 0 cfs.
In the fourth assignment, if not already computed, the RioGrandeElephantButteToCOCreditElephantButte.Supply opn the previous timestep is set equal to the negative of the previous storage in the COCredit account on Elephant Butte if the storage in this account was smaller than 0 acre-feet. Otherwise, the supply is set equal to 0 cfs.
This rule fires if the Elephant Butte Spill Switch is set to 1 AND the timestep is at or after the beginning timestep for rulebased simulation as input by the model user to the RulebasedSimulationStartDate scalar slot in the ModelRunTypeTriggers data object and as identified with the user-defined GetStartDate function.
Model supplies written by rule:
1. NMCreditElephantButteToRioGrandeElephantButte.Supply
2. RioGrandeElephantButteToNMCreditElephantButte.Supply
3. COCreditElephantButteToRioGrandeElephantButte.Supply
4. RioGrandeElephantButteToCOCreditElephantButte.Supply
List of key model objects with slots read by the rule or child functions:
1. ElephantButte
2. RioGrandeCompact
Log of when and how the rule has been modified (newest changes at the top):
Date: Who. What
2/12/19: Jesse Roach. Updated description and notes fields.
Statements
[image: Statements]
Execution Constraint
[image: Execution Constraint]
Referenced Functions
· [image: RPL Object Icon]VolumeToFlow
· [image: RPL Object Icon]GetStartDate
· [image: RPL Object Icon]PreviousAccountStorage
[image: Control Display Icon]2.5 [image: RPL Object Icon]CompactDebitAccountingOnElVado
Rule Purpose:
If Compact Debit storage on El Vado is enabled and there is a NM Debit on Dec 31st, the volume of the debit will be transferred out of all the Rio Grande accounts on El Vado (excluding P&P), pro-rata, and limited to the volume available in these accounts, into the CompactDebit account on El Vado, limited to a user-input maximum total transfer for the year.
Rule Logic: Execution Constraint logic is at end of explanation.
If the previous timestep was December 31st, if the "ElephantButte^NMCredit.Storage" was less than 0 acre-feet on this date, if the sum of the storages in the "MRGCDDrought", "SupplementalESA", "MRGCDoutofArticleVII" and "RioGrande" accounts on El Vado is larger than 0 acre-feet, and if "RioGrandeCompact.EnableCompactDebitStorageOnElVado" is set to 1, then the negative of the "ElephantButte^NMCredit.Storage", minus what has already been transferred into the CompactDebit accounts on ElVado and Abiquiu year-to-date, is transferred from those four accounts on El Vado into the CompactDebit account on El Vado, pro-rata according to the storage in each of those four accounts, limited to the storage in the four accounts, and limited to the value in the scalar slot RioGrandeCompact.MaxCompactDebitStorageElVado. Otherwise, these supplies are set to 0 cfs.
The rule first fires for all timesteps at or after the beginning timestep for rulebased simulation as input by the model user to the RulebasedSimulationStartDate scalar slot in the ModelRunTypeTriggers data object and as identified with the user-defined GetStartDate function.
Model supplies written by rule:
1. RioGrandeElVadoToCompactDebitElVado.Supply
2. MRGCDDroughtElVadoToCompactDebitElVado.Supply
3. SupplementalESAElVadoToCompactDebitElVado.Supply
4. MRGCDoutofArticleVIIElVadoToCompactDebitElVado.Supply
List of key model objects with slots read by the rule or child functions:
1. Abiquiu
2. ElVado
3. ElephantButte
4. RioGrandeCompact
Log of when and how the rule has been modified (newest changes at the top):
Date: Who. What
6/23/2023: Nick Mander - Hydros, edited rule and description, to limit compact debit storage in El Vado
9/19/2022: Nick Mander - Hydros, added a reference to the new "RioGrandeAbiquiuToCompactDebitAbiquiu.Supply"
12/02/2020: Nick Mander - Hydros, corrected assignment/computation for MRGCDOutofArticleVIIElVadoToCompactDebitElVado.supply (fromSupplementalESAElVadoToCompactDebitElVado.supply) incorrectly modified in a previous ruleset update (09-28-20).
2/12/19: Jesse Roach. Updated description and notes fields.
Statements
[image: Statements]
Execution Constraint
[image: Execution Constraint]
Referenced Functions
· [image: RPL Object Icon]FirstTimestepOfYear
· [image: RPL Object Icon]Min
· [image: RPL Object Icon]Max
· [image: RPL Object Icon]Sum
· [image: RPL Object Icon]SumFlowsToVolumeSkipNaN
· [image: RPL Object Icon]HasFlag
· [image: RPL Object Icon]VolumeToFlow
· [image: RPL Object Icon]HasRuleFiredSuccessfully
· [image: RPL Object Icon]GetStartDate
[image: Control Display Icon]2.6 [image: RPL Object Icon]CompactDebitAccountingOnAbiquiu
Rule Purpose:
If Compact Debit storage on Abiquiu is enabled and there is a NM Debit on Dec 31st, the volume of the debit will be transferred out of the Rio Grande account on Abiquiu into the CompactDebit account on Abiquiu, limited to the volume available in the RioGrande account and a user-input maximum total transfer for the year.
Rule Logic: Execution Constraint logic is at end of explanation.
If the previous timestep was December 31st, if the "ElephantButte^NMCredit.Storage" was less than 0 acre-feet on this date, if the storage in the "RioGrande" account on Abiquiu is larger than 0 acre-feet, and if "RioGrandeCompact.EnableCompactDebitStorageOnAbiquiu" is set to 1, then the negative of the "ElephantButte^NMCredit.Storage", minus what has already been transferred into the CompactDebit accounts on ElVado and Abiquiu year-to-date, is transferred from the RioGrande account on Abiquiu into the CompactDebit account on Abiquiu, limited to the storage in the RioGrande account and limited to the value in the scalar slot RioGrandeCompact.MaxCompactDebitStorageAbiquiu. Otherwise, the supply is set to 0 cfs.
The rule first fires for all timesteps at or after the beginning timestep for rulebased simulation as input by the model user to the RulebasedSimulationStartDate scalar slot in the ModelRunTypeTriggers data object and as identified with the user-defined GetStartDate function.
Model supplies written by rule:
1. RioGrandeAbiquiuToCompactDebitAbiquiu.Supply
List of key model objects with slots read by the rule or child functions:
1. Abiquiu
2. ElVado
3. ElephantButte
4. RioGrandeCompact
Log of when and how the rule has been modified (newest changes at the top):
Date: Who. What
6/23/2023: Nick Mander - Hydros, edited rule and description, to limit compact debit storage in Abiquiu
9/19/2022: Nick Mander - Hydros, created rule.
Statements
[image: Statements]
Execution Constraint
[image: Execution Constraint]
Referenced Functions
· [image: RPL Object Icon]GetTableDate
· [image: RPL Object Icon]FirstTimestepOfYear
· [image: RPL Object Icon]Min
· [image: RPL Object Icon]Max
· [image: RPL Object Icon]Sum
· [image: RPL Object Icon]SumFlowsToVolumeSkipNaN
· [image: RPL Object Icon]HasFlag
· [image: RPL Object Icon]VolumeToFlow
· [image: RPL Object Icon]HasRuleFiredSuccessfully
· [image: RPL Object Icon]GetStartDate
[image: Control Display Icon]2.7 [image: RPL Object Icon]RecordEOYNMandCOCreditAdjustments
Rule Purpose:
Record calculated NMCredit and COCredit adjustments to separate slots in the RioGrande.Compact data object.
Rule Logic: Execution Constraint logic is at end of explanation.
On the first timestep of the year, this rule records the credit adjustments at the end of the previous year.
This rule fires at the first timestep of the year.
Model slots written by rule:
1. RioGrandeCompact.NMCreditAdjustmentEOY
2. RioGrandeCompact.COCreditAdjustmentEOY
List of key model objects with slots read by the rule or child functions:
1. RioGrandeCompact
Log of when and how the rule has been modified (newest changes at the top):
Date: Who. What
2/12/19: Jesse Roach. Added description field and updated notes field.
10/05/2018: Marc Sidlow. New rule to record NMCredit andr COCredit storages in RioGrande.Compact data object.
Statements
[image: Statements]
Execution Constraint
[image: Execution Constraint]
Referenced Functions
· [image: RPL Object Icon]IsFirstTimestepOfYear
· [image: RPL Object Icon]IsInput
[image: Control Display Icon]2.8 [image: RPL Object Icon]RecordEOYNMandCOCreditStorages
Rule Purpose:
Record NMCredit and COCredit storage in EB at the end of the year to separate slots in the RioGrandeCompact data object.
Rule Logic: Execution Constraint logic is at end of explanation.
If there is no data in RioGrandCompact.NMCreditDebit or RioGrandCompact.COCreditDebit, set them equal to the previous timestep storage of the given credit water in Elephant Butte.
This rule fires at first timestep of the year.
Comment:
Nearly identical to RecordEOYNMandCOCreditStoragesPreAdjustment. Seems that one of the two rules and associated slots could be removed.
Model slots written by rule:
1. RioGrandeCompact.NMCreditDebit
2. RioGrandeCompact.COCreditDebit
List of key model objects with slots read by the rule or child functions:
1. RioGrandeCompact
2. ElephantButte
Log of when and how the rule has been modified (newest changes at the top):
Date: Who. What
2/12/19: Jesse Roach. Added description field and updated notes field.
10/05/2018: Marc Sidlow. New rule to record NMCredit andr COCredit storages in RioGrande.Compact data object.
Statements
[image: Statements]
Execution Constraint
[image: Execution Constraint]
Referenced Functions
· [image: RPL Object Icon]IsFirstTimestepOfYear
· [image: RPL Object Icon]IsInput
[image: Control Display Icon]2.9 [image: RPL Object Icon]RecordEOYNMandCOCreditStorages_Accumulated
Rule Purpose:
Record accumulated New Mexico and Colorado Rio Grande Compact credit adjustments with and without evaporation to separate slots in the RioGrande.Compact data object.
Rule Logic: Execution Constraint logic is at end of explanation.
On the first timestep of the year, record the previous timestep storage of the given credit water in Elephant Butte. On the first timestep of subsequent years, sum all previous credit adjustments for the sum without evaporation. For the sum with evaporation, sum all previous years with evaporation, and add the adjustment and evaporation for the previous year.
This rule fires at the first timestep of the year.
Model slots written by rule:
1. RioGrandeCompact.NMCreditDebit_Accumulated
2. RioGrandeCompact.COCreditDebit_Accumulated
3. RioGrandeCompact.NMCreditDebit_Accumulated_WithEvaporation
4. RioGrandeCompact.COCreditDebit_Accumulated_WithEvaporation
List of key model objects with slots read by the rule or child functions:
5. RioGrandeCompact
6. ElephatnButte
Log of when and how the rule has been modified (newest changes at the top):
Date: Who. What
2/12/19: Jesse Roach. Added description field and updated notes field.
10/05/2018: Marc Sidlow. New rule to record NMCredit andr COCredit storages in RioGrande.Compact data object.
Statements
[image: Statements]
Execution Constraint
[image: Execution Constraint]
Referenced Functions
· [image: RPL Object Icon]IsFirstTimestepOfYear
· [image: RPL Object Icon]NMCreditGainLoss
· [image: RPL Object Icon]NMCreditAdjustment
· [image: RPL Object Icon]COCreditAdjustment
· [image: RPL Object Icon]COAccumulatedWithEvap
· [image: RPL Object Icon]COCreditGainLoss
· [image: RPL Object Icon]NMAccumulatedWithEvap
· [image: RPL Object Icon]SumSlotSkipNaN
· [image: RPL Object Icon]IsInput
· [image: RPL Object Icon]RoundVolume
[image: Control Display Icon]2.10 [image: RPL Object Icon]SetInitialCreditStorage
Rule Purpose:
Reset New Mexico and Colorado credit storage to zero if they are negative.
Rule Logic: Execution Constraint logic is at end of explanation.
Two WITH statements define the accumulated credit volume for New Mexico and Colorado. Two if statements then set Credit Storage to end the previous year equal to the larger of 0 acre-feet and the accumulated storage.
This rule fires at the first timestep of the year.
Comment:
12/2/2019: Jesse Roach. Does this need to occur only if debit accounting is occuring at El Vado? Is the ELSE statement necessary?
Model slots written by rule:
1. ElephantButte^NMCredit.Storage
2. ElephantButte^COCredit.Storage
List of key model objects with slots read by the rule or child functions:
1. RioGrandeCompact
Log of when and how the rule has been modified (newest changes at the top):
Date: Who. What
2/12/19: Jesse Roach. Added description field and updated notes field.
10/05/2018: Marc Sidlow. New rule to set negative NMCredit and/or COCredit storages to zero and compute RioGrande storage to balance accounts.
Statements
[image: Statements]
Execution Constraint
[image: Execution Constraint]
Referenced Functions
· [image: RPL Object Icon]IsFirstTimestepOfYear
· [image: RPL Object Icon]NMCreditAdjustment
· [image: RPL Object Icon]COCreditAdjustment
· [image: RPL Object Icon]RunStartDate
· [image: RPL Object Icon]IsInput
[image: Control Display Icon]2.11 [image: RPL Object Icon]SetInitialRioGrandeStorage
Rule Purpose:
Reset Rio Grande storage in Elephant Butte based on total storage less all other accounts with positive storage.
Rule Logic: Execution Constraint logic is at end of explanation.
Nested if statements are used to separate three cases, one where both NM And CO credit are negative, and two where one or the other are negative. Rio Grande storage is set equal to the total storage less the sum of all SJC in storage and any positive credit storage.
This rule fires at the first timestep of the year.
Model slots written by rule:
1. ElephantButte^RioGrande.Storage
List of key model objects with slots read by the rule or child functions:
1. ElephantButte
Log of when and how the rule has been modified (newest changes at the top):
Date: Who. What
2/12/19: Jesse Roach. Added description field and updated notes field.
10/05/2018: Marc Sidlow. New rule to set negative NMCredit and/or COCredit storages to zero and compute RioGrande storage to balance accounts.
Statements
[image: Statements]
Execution Constraint
[image: Execution Constraint]
Referenced Functions
· [image: RPL Object Icon]IsFirstTimestepOfYear
[image: Control Display Icon]2.12 [image: RPL Object Icon]SetRelinquishedCompactCredits
Rule Purpose:
This rule records an amount of relinquished Compact credits. Relinquished credits allow for subsequent storage of Emergency Drought water at El Vado Reservoir when Article VII is in effect to be used by MRGCD and as supplemental water for ESA operations. If a switch has been set by the model user, Compact credits will be relinquished on an input date for the relinquishment to occur. If a threshold Compact credit is exceeded, Compact credits will be relinquished to reduce the credit to a target lower Compact credit.
Rule Logic: Execution Constraint logic is at end of explanation.
The value for the RelinquishedNMCredits series slot in the RelinquishedCreditsEmergencyDroughtWater data object is set using two IF THEN ELSE statements. If relinquished credits are to be modeled based on an input value greater than 0.1 in the the TriggerModelRelinquishedCredits scalar slot as checked with the ModelRelinquishedCredits user-defined function and the current timestep matches the date for relinquishments as input to the DateOfRelinquishment column of the RelinquishedCreditsTriggers table slot, a relinquishment volume will be computed; otherwise, the value is set to zero. If the Compact credits as of December 31 of the previous year as checked with the CreditWater user-defined function is less than the value input to the ThresholdForRelinquishment column of the RelinquishedCreditsTriggers table slot, the relinquishment value is set to zero. Otherwise, the value is set to the amount of the Compact credit as of December 31 minus the value input to the CreditAfterRelinquishment column of the RelinquishedCreditsTriggers table slot.
This rule fires if the current timestep is greater than or equal to the beginning timestep for rulebased simulation as input by the model user to the RulebasedSimulationStartDate scalar slot in the ModelRunTypeTriggers data object and as identified with the user-defined GetStartDate function and if the value for the RelinquishedNMCredits series slot in the RelinquishedCreditsEmergencyDroughtWater data object is a NaN for the current timestep.
Model slots written by rule:
1. RelinquishedCreditsEmergencyDroughtWater.RelinquishedNMCredits
List of key model objects with slots read by the rule or child functions:
2. RelinquishedCreditsEmergencyDroughtWater
3. ElephantButte
Log of when and how the rule has been modified (newest changes at the top):
Date: Who. What
2/12/19: Jesse Roach. Added description field and updated notes field.
Statements
[image: Statements]
Execution Constraint
[image: Execution Constraint]
Referenced Functions
· [image: RPL Object Icon]CreditWater
· [image: RPL Object Icon]RelinquishmentDate
· [image: RPL Object Icon]ModelRelinquishedCredits
· [image: RPL Object Icon]GetStartDate
[image: Control Display Icon]2.13 [image: RPL Object Icon]UpdateEmergencyDroughtStorageAllocations
Rule Purpose:
This rule includes three assignment statements to track the allocations for storage of Emergency Drought water for MRGCD, ESA, and use by municipalities where the allocations are increased for a proportion of any relinquished Compact credits. Note that the allocations include water still in storage and the allocations do not decrease until the water is released from storage. Also, the allocations for municipalities are tracked but URGWOM is not set up to model the storage or use of this water for municipalities.
Rule Logic: Execution Constraint logic is at end of explanation.
Values for the MRGCDDroughtAllocation and SupplementalESAAllocation series slots in the RelinquishedCreditsEmergencyDroughtWater data object are set with reference to the user-defined UpdatedAllocationForEmergencyDroughtWaterStorage function. The computation with the function starts with the allocation at the previous timestep. If the current timestep is the Start Timestep and an initial allocation was not input, the initial allocation is set to the initial storage for the corresponding Emergency Drought Water account. The allocation is then updated based on the previous gain/loss for the corresponding account and to reflect any new allocation based on the amount of the relinquished Compact credit at the current timestep (which will often be zero unless a relinquishment occurred at the current timestep) multiplied by the proportion of that relinquishment to be allocated for the corresponding account as input to the ProportionsForNewEmergencyDroughtAllocations table slot. The allocation is then reduced based on any release of water from the allocated storage at the previous timestep as identified by the value for the relevant accounting supply (i.e. the allocation as tracked in URGWOM is not reduced when the water is stored but is reduced when the water is released). A separate similar calculation is completed within the rule for tracking the allocation for municipalities, but with no check against gain/loss or release for the account since there is no account or storage or release to reference for municipalities. The allocation for municipalities is tracked but not used in URGWOM.
This rule fires if the three slots written (MRGCDDroughtAllocation, SupplementalESAAllocation and MunicipalitiesAllocation) do not already have valu
Model slots written by rule:
1. RelinquishedCreditsEmergencyDroughtWater.MRGCDDroughtAllocation
2. RelinquishedCreditsEmergencyDroughtWater.SupplementalESAAllocation
3. RelinquishedCreditsEmergencyDroughtWater.MunicipalitiesAllocation
List of key model objects with slots read by the rule or child functions:
1. RelinquishedCreditsEmergencyDroughtWater
2. ElVado
Log of when and how the rule has been modified (newest changes at the top):
Date: Who. What
2/12/19: Jesse Roach. Added description field and updated notes field.
Statements
[image: Statements]
Execution Constraint
[image: Execution Constraint]
Referenced Functions
· [image: RPL Object Icon]UpdatedAllocationForEmergencyDroughtWaterStorage
· [image: RPL Object Icon]RunStartDate
image3.png

image4.png
PRINT ResetRanDev (TRUE , @"24:00:00 October Max DayOfMonth, 1983")

image5.png
@'Start Timestep™

image6.png

image7.png
ForecastData.Forecasterror [EndOfvionth ()]
S e e] =
Gethonthacstrng (@)
T (ComputeForecastrrr () <0.000000 ‘ace-feet” JTHEN
ForecastData MaximunForecasteior [Elada”,] 10000000
Gethonthacstrng (@)

EES
ForecastData. MaximumForecastError [“ElVado”,]
GetMonthistring (@'t").
BOF
S

ComputeForecasterror ()
EDF

image8.png
IsFirstTmestepOfMonth () AND IsNaN ForecastData.ForecastError [EndofMonth ()]

image9.png

image10.png
ForecastData.PercentForecastError [Endofvonth ()]
(NOT It Forecastata. ForecastError [Endofonth ()]) THEN
T (Getonth (@) <=7.0000000) THEN
lr (smmm (@-24 00 March 1, Current Year”)v: 0.000000 “acrefeet”)m
©24:00:00 Juy Max DayOonth, Curent Year”
T (ForecastData.ForecastError [Endofvonth ()] > 0.0000000 “acre-feet”) THEN
o Forecastpata ForecastEror [Endofonth ()] .
EstmateEVadolnfon (@-24. Merch 1, Curent Year”,)
©24:00:00 Ly Max DayOffonth, Current Year"
Forecastpata MaxpercentForecastEror [n,]
0

as
vax ForecastData.Forecastrrr [Endofionth ()] .
‘EstmateElVadoInfiow (@"24:00:00 March 1, Current Year”)
€°25:00:00 1y Max D2yOMonth, Curent ear”
ForecasiData MaxpercentrorecastEror [n,] 10000000
o
aorF
as
0.1000000
a0
as
I (Gettear (@) == Getfear (@'Start Timestep™)) THEN
0.0400000
as

Mn (n 1000000,

ForecastData percenorecastrrr [@26:00:00 iy Max DayOfMonth, Curent vear*))

BOF
B0F
EDF

image11.png
IsFirstTmestepOfMonth () AND IsNaN ForecastData.PercentForecastError [EndofiMonth ()]

image12.png
The total usable storage at Elephant Butte and Caballo is computed as the total storage at Elephant Butte:
minus the Compact credit amounts as of the end of the previous year, December 31 (The year-to-date
evaporation losses to any Compact credit water in storage is not subtracted). Any relinguished Compact
- creit s mmedistely refiected as acditonsl usabiestorage 5 of the date ofthe reinausment. Any
= 520 s Chams Project water i storage s subtractd, Storage at Cabalo Reservr = added.
RiGrandeCompact Usabiestorage (]
~Eephantute Storsge (@'t 1)
~WITH DATETIVE date = I (NOT Ishal EsphantEutte NiCredit Storage [@°24:00:00 Decenber 31, Previous vear)) THEN DO
©°24:00:00 Decenber 31, Previous Year”
as
'Start Timestep -
sorF
vax
(s [date],)
0.0000000 "acre "
e
(o [date],)
0.0000000 "acre
e wm
+TF (ModeRelinquishedCredits () | THEN
o et
Reinqusmentoste ()
+1.0000000 “day”
NaNTazero (RelcuishedcredisEmergencyDroughtister RelnqushechiCredts (Relnausimentoate (1))
as
0.0000000 “acre
a0
~Elephantsutte Abuqueraue Storage [@*t-1°]
-Elephantsutte SantareCiy storage [@*t-1°]
~Elephantsutte "Combined.Storsge [@t 1)
~Elephantsutts Recamation.storage [@t 17
+CaballoStorage [@'t-1°]

image13.png
IsNaN RioGrandeCompact.Usablestorage []

image14.png
The Artice VII switch s recorded as 1if the usable storage as of the end of the previous tmestep s less
than the 400,000 acre-ft threshold. This switch indicates that storage restrictions at upstream reservoirs are in place
= er Artde VI of the Compact.Trisswich s checked by subscquent res s needed when seting operatons at
- mpscted reservors.
RiGrandeCompsct Artide TIiitch] = IF (RioGrandeCompact Ussblestorage (] < Compactvinstorage () THEN
10000000
as
0.0000000
a0

RiGrandeCompsct Artide TSnitch [@*-1°]
(@7 == Runstartoate () AND Istah RioGrandeCompact ArticevIIswich [@'t~ 1]) e
I (RioGrandeCompact Usabestorage [) < Compactnstarage ()) THEN
10000000
as
0.0000000
a0
BoF

image15.png
IsNaN RioGrandeCompact. ArtideVIIswitch []

image16.png
Frstimestepoftear (@),
©'Start Tmestep -
FrstTmestepOftear (@'t)TO Runndoate ()
as
@t ToRunEndDste ()
a0
RioGrandzCompact UseAboveOtoni [dste) = RioGrandeCompact UseAboveOtonPerodc [dm,]
“Fow

FOR (DATETIME date INIF [Ncnum&t[umm Gage Inflow ,]]m Do

D FOR

OR (DATETIME date INIF [NOT NaNInSit Otow Gage Inflon, | 0o
[(et o,
©'Start Tmestep -
FrstTmestepOftear (@'t)TO Runndoate ()
as
@t ToRunEndDste ()
aorF
RioGrandzConpact ReturnFionCredteoosquetrit [date)
< RioGrandeCompact ReturrFlon CredtPojosaueLntperiodic [dm,]
“Fou
S0 FOR
SRINT I (Nahnsiot (RioGrandzCompact UseAboveOtoni, RunstartDate (), Runendoate ())) THEN
UsehverageMessage (RoGrandeCompsct UseAboveOtoni)
sorF
SRINT I (el (RiorandzCompact ReturrFlonCredPojoaquelt Rurstartate (), Runncate ()))THEN
UseAverageMessage (RioGrandeCompact RetrrFlonCreditPojosquelnt)
sorF
PRINT IF (Natiniot (Otowi Gage Inflow,FrstTmestepOfvear (@'¢"), @'Start Testep - 1)) THEN

“Not all data s avallab to sum back to begining of year fo Rio Grande Compact numbers”
EDF

image17.png
@'t ==RunstartDate ()
AND (NaNInSiot [Rmsvandecumpan UseAboveOtowi ,]

RunstariDate (),
RunendDate ()
AND NaNInSot [RioGrandeCompact ReturnFlonCreditPojoagueliit
[mmsmmvz O]
RunéndDate ()

image18.png
With an Elephant Butte spil, Compact credits for New Mexico and Colorado are zeroed out. This is done by
setting accounting supples to ransfer water from the credit account to the Rio Grande account f the credit
s posiive or ransfer water from the Rio Grande account o the redit account f the creitis negative, IFa
condition s not satsfed, the accounting supply s set to zero.
NMCreditElephantButteToRioGrandeElephantButte. Supply [@'t - 17]

-F (m.m.sna; (wcyemr,)> 0.0000000 “acre-feet

Eephantautte
VolumeToFiow [m.m.sna; (wcyemr,)]

Eephantautte
et-r
s
¥ (r«:ngm NMCreditElephantButteToRioGrandeElephantButte. Supply [@'t - 17 THEN.
AND NMCreditElephantButteToRioGrandeElephantButte. Supply [@'t - 1] > 0.0000000 "
NMCreditElephantButteToRioGrandeElephantButte. Supply [@'t -1
ase
0.0000000 "
B0
Y3

RioGrandeElephantButteToNMCreditElephantutte. Supply [@'t - 17]
-F (m.m.snax (WMCved\t',)< 00000000 “acre-eet

Elephantutte

‘VolumeToFlow Mm..snn;(wcyemr,)
(rne) |
et

*-1,0000000

EsE

¥ (mm RioGrandeElephantButteToNMCreditElephantButte. Supply [@'t -1
AND RioGrandeElephantButteToNMCreditElephantButte. Supply [@'t - 1] > 0.0000000 "cfs’
RioGrandeElephantButteToNMCreditElephantButte. Supply @'t -1
ase
0.0000000 "
B0
Y3

COCreditElephantButteToRioGrandeElephantButte. Supply [@'t - 17]
-F (m.m.sna; (\:Dcvedm‘,)> 00000000 “acre-eet)m
Eephantautte
VolumeToFiow [m.m.sna; (\:Dcvedm‘,)]

Eephantautte
et-r
s
¥ (mm COCreditElephantButteToRioGrandeElephantButte. Supply [@'t -1
AND COCreditElephantButteToRioGrandeElephantButte. Supply [@'t - 1] > 0.0000000
COCreditElephantButteToRioGrandeElephantButte. Supply [@'t -1
ase
0.0000000 "
B0
Y3

RioGrandeElephantButteToCOCreditElephantButte. Supply [@'t - 17]
-F (m.m.snax (tucvedm‘,)< 00000000 “acre-eet

Elephantutte

‘VolumeToFlow Mm..snn;(mcyemr,)
(rne) |
et

*-1,0000000

EsE

TF (NOT IsNaN RioGrandeElephantButteToCOCreditElephantButte. Supply [@'t -1°]
AND RioGrandeElephantButteToCOCreditElephantButte. Supply [@'t - 1] > 0.0000000

)

RioGrandeElephantButteToCOCreditElephantButte.Supply [@'t -
ase
0.0000000 "
B0
B0

image19.png
@'t" >=GetStartDate () AND RioGrandeCompact.ElephantButteSpillswitch [] == 1.0000000

image20.png
WITH [NUMERIC totaRGStorageEVado Do

=sum
[MAPLIST (STRING account IN (“MRGCDDrought” Do
“SupplementalESA”
“MRGCDoutofArticeVII”
“RioGrande"
Max

(E‘ladu (account CONCAT " Storage™) [@'t- 1],)
00000000 “acrefeet”
N0 pLIST
T (EiephantButte WiCreditStorage [@724:00:00 December 31, Previous Year™]\ THEN
<0.0000000 “sce-feet”
AND totaRGStorageENado
> 0.0000000 “sce-feet”
AND RioGrandeCompact EnableCompactDebitStorageOnENado []
WITH [NUMERIC remainngDebitichme
Beginning of year debit minus hat has e transfered nto CompaciDebit account V1D
o
(, (Eephantbutte WCredi Storage [@t-17]),)
RioGrandeCompact MaxCompaciDebitStorageeiado []
-sum
[MAPLIST (SLOT supply IN(” RioGrandeEIVadoToCompactDebitE!Vado. Supply ,
MRGCDDroughtElVadoToCompactDebitENVado. Supply ,
‘SupplementalESAEIVadoToCompactDebitElvado. Supply ,
MRGCDoutofArticleVIIEVadoToCompactDebitElVado. Supply ,
RioGrandeAbiquiuToCompactDebitAbiquiu. Supply
‘SumFlowsToVolumeSkpNah
supply,
FrstTmestepOftear,
(et)
et
Evo MapLisT
~ENVado"CompactDebit.Storage [€°24:00:00 Decamber 31, Previous Year
WITH [NUVERIC TotaTransferémount | DO

10000000

=tn
(vsmammgﬂebwwu\ume))
totaRGStoragetlVado
RioGrandeENVadoToCompactDebitEiVado. Supply [@'t]
T [NOT HosFag TN
RioGrandeElVadoToCompactDebitvado Sy ,
B |
=
VolumeToFiow
TotaTransferamount
= [Max B
(ammumme storage [@t-1°],)
0.0000000 “acre feet”
‘totaRGStoragetiVado
et-r
BoF
MRGCDDroughtENadoToCompactDebitEiVado.Supply [@'t]
T [NOT Hosag TN
MRGCDDroughtENVadoToCompactDebitEiVado Supply
£ J
=
VolumeToFiow
TotaTransferamount
= [Max B
(ammmcuumugm storage [@t-1°],)
0.0000000 “acrefeet”
totaRGStorageEiVado
et-r
BoF
SupplementalESAEVadaToCompactDebitENVado. Supply [@t"]
T [NOT Hosiag TN
SupplementalESAENadoToCompactDebitEVado. Supmly ,
F |
=
VolumeToFiow
TotaTransferamount
= [Max B
(ammuwemmm storage [@t-1°],)
0.0000000 “acre feet”
totaRGStoragetiVado
et-r
2o
MRGCDoutofArticeVIIEIVadoToCompactDebitENVado. Supply [@t"]
T [NOT Hosiag TN
MRGCDoutofrticeVITENadoToCompactDebitENado. Supply
& |
=
VolumeToFiow
TotaTransferamount
= [Max B
(Evaduwmcnuummodem storage [@t-1°],)
0.0000000 “acre feet”
totaRGStoragetiVado
et-r
Y
e wmH
D W
s
RioGrandeENVadoToCompactDebitElVado. Supply [@'t]
=TF (NOT HesFlag TN
RioGrandeElVadoToCompactDebitvado Sy ,
=
0.0000000 "
BoF
MRGCDDroughtENadoToCompactDebitEiVado.Supply [@'t]
=TF [NOT HasFlag TN
MRGCDDroughtENVadoToCompactDebitEiVado Supply
=
0.0000000 "
BOF
SupplementalESAEVadaToCompactDebitENVado. Supply [@t"]
=TF [NOT HasFlag TN
SupplementalESAENadoToCompactDebitEVado. Supmly ,
=
0.0000000 "
2o
MRGCDoutofArticeVIIEIVadoToCompactDebitENVado. Supply [@t"]
=TF (NOT HasFlag TN
MRGCDoutofrticeVITENadoToCompactDebitENado. Supply
=
0.0000000 "
BoF
BoF

END WITH

image21.png
NOT HasRuleFiredSuccessfully ("Current Rule”) AND @'t" >= GetStartDate ()

image22.png
WITH [NUMERIC totalRGStorageAbiquiu DO
—sum
MAPLIST (STRING account IN { RioGrande” }) DO
ax
(Ab\qmu (account CONCAT " Storage™) [@'t-1°],)
0.0000000 "acrefeet”
END MAPLIST
T EiephantButte WNCreditStorage [@724:00:00 December 31, Previous Year']\ THEN
<0.0000000 “sce-feet”
AND totaRGStorageAbiqus
> 0.0000000 “sce-feet”
AND RioGrandeCompact EnableCompactDebitStorageOnabiauu]
WITH [NUMERIC remainngDebitichme
. Begining of year debit minus hat has been transfered into CompactDebit accounts V1D
o
(, (Eephantbutte WCredi Storage [@t-17]),)
RioGrandeCompact MaxCompaciDebitStorageabiqu []
-sum
[MAPLIST (SLOT supply IN(” RioGrandeEIVadoToCompactDebitE!Vado. Supply ,
MRGCDDroughtElVadoToCompactDebitENVado. Supply ,
‘SupplementalESAEIVadoToCompactDebitElvado. Supply ,
MRGCDoutofArticleVIIEVadoToCompactDebitElVado. Supply ,
RioGrandeAbiquiuToCompactDebitAbiquiu. Supply
‘SumFlowsToVolumeSkpNah
supply,
FrstTmestepOftear,
(et)
et
Eno mapLisT
- biquiu~CompactDebit Storage [@24:00:00 December 31, Previous Year"]
WITH [NUVERIC TotaTransferémount | DO

10000000

=tn
(vsmammgﬂebwwu\ume))
totaRGStorageAbiqus
RioGrandeAbiquiuToCompactDebitabiquiu. Supply [@t"]
T [NOT Hosag TN
RioGrandeAbquuToCompaciDebitAbiaui.Supply
¥ J
=
VolumeToFiow
TotaTransferamount
= [Max B
(Ab\qmu"wusvande storage [@t-1°],)
0.0000000 “acre-feet”
‘totaRGStorageAbiauls
et-r
Y
e wmH
D W
s
RioGrandeAbiquiuToCompactDebitabiquiu. Supply [@t"]
=TF (NOT HasFlag TN
RioGrandeAbquuToCompaciDebitAbiaui.Supply
E |
=
0.0000000 "
BoF
BoF

END WITH

image23.png
NOT HasRuleFiredSuccessfully ("Current Rule”)
AND @'t" >= GetStartDate ()
AND @'t" < GetTableDate (RioGrandeCompact.CompactDebitReleaseSchecile ,

image24.png
Recording NM and CO Credit Adjustments at EOY

'Start Timestep® AND NOT It (RioGrandeCompact AMCredtAdustmenteOY , @'t - 1)) THEN
RioGrandzCompact NHCredtAdiustmentEOY [@°t- 1] = 0.0000000 "crefeet”
ase
RiorandzCompact NHCredtAdistmentEOY [@1t 17
2o
COCreditAdjustment
IF (@ == ©'Strt Tmestep® AND NOT It (RioGrandeCormpact COCredtAdustmenteOY , @'t~ 1)) THEN
RiorandzConpact COCredtAdustmentEOY [@t~ 1] = 0.0000000 “crefeet”
ase
RiorandzConpact COCredtadistmenteOY [@1t 17
DI

RioGrandeCompact NMCreditady [@'t~ 1]

RioGrandeCompact COCreditady [@'t~ 1]

image25.png
IsFirstTmestepOfyear ()

image26.png
Recording NM and CO CreditDebit Status at EOY
- Necredtpebt
IF (NOT Iinput (RoGrandeCompsct NWCrecitDebt, @°t- 1))THEN
RioGrandeCompact NWCrediDebi [@'t 1) = Bephantutte icredt. storage (@~ 17]
2o
- Cocredoebt
IF (NOT Iinput (RioGrandeCompsct. COCredtDebt, @°t- 1)) THEN
RioGrandeCompact. COCrediDebi [@t 1] = Bephantutte~cocredttorage (@'t~ 17]
DI

image27.png
Recording NM and CO CreditDebit Accumulation at EOY (Without any Evaporation Included)
- NMCredDebitAccumiation
F (@'t" == @'Start Timestep” AND NOT IsInput (Rmsvandecumpan NMCreditDebit_Accumulated ,))“BI
ot
= I StarTimestep ofrun an ot nput,set Il value to It NMCrediStorage
RiorandzCompact NHCreditDebt_Accumuted [@-1°)
Sephantute MCredi storage [@t-1°]
aise
 Ese Sum al previous vakues
RiorandzCompct NHCreditDebt_Accumusted [@°t-1°]
- SumSlotSkipNaN [leivandecumpan NMCreditAdjustmentEOY ,]

@'Start Timestep - 1,

et-1

=D I

COCreditDebitAccumiation

F (@'t" == @Start Timestep” AND NOT Islnput (masvandecumpm COCreditDebit_Accumulated ,))m
et-1

= I StarTimestep ofrun an ot nput,set Il value to It NMCrediStorage

RiorandzCompact COCrecitDebt_Accumuted [@*-1°)

Sephantutte COCredistorage [@t-1°)

aise

 Ese Sum al pevious values

RiorandzCompact COCredDebt_Acaumusted [@°t-1°]

=~ SumSlotSipia | RioGrandeCormpact COCredtAdistmenteOY ,
et

B0
Recording NM and CO CreditDebit Accumulation at EQY (With Evaporation Inciuded)
= NMCrediDebitAccumaton Vit Evaporaton
F (@'t" == @'Start Timestep” AND NOT IsInput (Rmsvandecumpan NMCreditDebit_Accumulated_WithEvaporation ,))“BI
ot

= I StarTimestep ofrun an ot nput,set il value to It NMCrediStorage

RioGrandzCompact NHCrecitDebt Accumusted_WithEvaporation @'t 1)

Sephantute MCredi storage [@t~ 1)

aise

* Ese compute

RioGrandzCompact NHCreditDebt Accumusted WithEvaporation (@'t 1)

~Roundiokme (NHCredtadiustment () +NMCredtGantoss () +WAcamustedWitEvan ())

B0
- CoCrediDebtAccumisted Witvaparston
F (@'t" == @'Start Timestep” AND NOT IsInput (Rmsvandecumpan COCreditDebit_Accumulated ,))“BI

ot
= I StarTimestep ofrun an ot nput,set il value to It COCredStorage
RiorandzCompact COCrectDebt Accumusted WithEvaporation (@'t 1)
Sephantutte COCreditorage [@t~ 1)
aise
* Ese compute
RiorandzCompact COCredDebt Accumusted WithEvaporation (@'t 1)
Roundiokme (CoCredtadstment () + COCredtGantoss () + CoAcaumtediitivep ()
20

image28.png
Reset Initial NMCredit and COCredit Storages in Elephant Butte.

WITH (NUVERIC NHCredHEOYStorage 0
= NaNTozero (RioGrandeCompact NWCrecitDebit_Accumusted WithEvaporaton [6°24:00:00 December 31, revious Year - 1 Year”))

wm (NuMERxc CocredtEOYStorage)m
= NaNTazero (RioGrandeCompact,COCrecitDebit_Acaumuated_WithEvaporation [@24:00:00 December 31, Previous Year - 1Year*])
wm (NuMERxc NMCreditad)m
= NaToZero NMCreditAdjustment ()
wm (NuMERxc cocreditads)m
= NaToZero COCreditAdjustment ()
T [NoT iinput TN
(aep«mumwcym Storage,)
et-r
ElephantButte "MCredit Storage [@t- 1]
‘= NMCreditEOYStorage
+NMCreditady

sorF
I (NOT tsinput e
(Eephamﬂms'cucvedwt Storage ,)
et
Sephantutte COCredittorage [@-1°]
= Couredteorstorage
+Cocreditady
sorF
0w
e wm
e wm
0 WITH

image29.png
IsFirstTmestepOftear () AND @'t !=RunstartDate ()

image30.png
Reset RioGrande Account Storage in Elephant Butte based on previously adjusted NMCredit and
- COCreditend ofyear storages, Tne RoGrande Storage s conputec to blance out the Accounts
- o Total eservor sorage.
WITH [NUMERIC S3Storage 0
~ Eephantutie Abuueraue Storage (@t 1)

+Eephantputte ~Combined Storage [@t 1°]

+ Eephantputte “Redamaton.storage [- 1°]

+Eephanteutte ~SantareCty Storage (@'t 1]

WITH [NUMERIC CoCredistorage 0
(SephantuteCOCredi:torage [@t~ 1°] <= 0.0000000 “scre-eet) THEN
0.0000000 acrefeet”
as

Sephantutte COCredit storage [@17
aorF
WITH [NUMERIC NCrediStorage 0
17 (lephantsutte Credt Storsge (@'t 1] <= 0.0000000 scre-feet”) THEN
0.0000000 acrefest”
as
Sephantutte MCredic storage [@17
aorF
WITH (NUMERIC totalStorage)Dﬂ
= Eephantute Storsge (@'t 1)
Sephantutte " RioGrande.storage [@'t~ 1]
totastorage
~sastorage
-cocredistorage
~Credistorage
0w
e wm

e wm

0 WITH

image31.png
#If the trigger is set to model new relinquished Compact credits, this rule computes the amount of the relinquishment based
- o the currnt magrituce of the creit and threshocs fo vhen 3 elncushment woukd occur an for settng the smount.
RelnqushedCredtsEmergencyDroughiliater. ReinauishedCredis (]
=F (Wﬂis O)m
AND @'F == RelnaustmentDate ()

T (Creditater (Eephantsutte) TN
“ThesholdrorRelnqushment”
0.0000000 “acrefeet”
as
Creditiater (ElephantButte)
~RelnqushedCredisEmergencyDroughtiater RelnauihedCredisTriggers [Tiger,]
“CredthfterReinguishment”
aoF
as

0.0000000 "acre-feet”
EDF

image32.png
@'t" >= GetStartDate () AND IsNaN RelinquishedCreditsEmergencyDroughtWater.RelinquishedNMCredits []

image33.png
Allocations for storage of Emergency Drought water are tracked with separate series slots for
MRGCD, ESA,
and muricpaies. The alocatons incude water i storage, s the alocaton s recuced
2 AFTER the water has
been released. Thisruk includes three assignment statements to track the alocations based
on the prevous
alocation (or nitl alocaton fit s the start tmestep), any release at the previous timestep,
and any new
alocation as a proportion of areinauished Compact areit t the curent tmestep. Note that
alocatons for
municpaltes are racked but URGWOM s not setup to modelthe storage or use of this water
for muricpaites.
RelinquishedCreditsEmergencyDroughtilater MRECDDroughtallocaton []
= UpdatedalocationForEmergencyDroughtiWaterStorage ("MRGCDDrought”)
RelinqushedCreditsEmergencyDroughtiWater Supplementalesaalocation []
= UpdatedalocationForEmergencyDroughtWaterStorage ("SupplementalESA™)
RelinquishedCreditsEmergencyDroughtilater Municpaitiesilocstion (]
=IF (@t ==RunstartDate ()) THEN
IF (IsNa RelinuishedCreditsEmergencyDroughtiiater Municaitiesilocation [@t~ 1])THEN
0.0000000 “acre-f"
s
RelinquishedCreditsEmergencyDroughtiater MuricaitiesAlocaton [@°t - 1]
BoF
s
RelinquishedCreditsEmergencyDroughtiater MuricaitiesAlocaton [@°t - 1]
BoF
+ [ReinquishedCreditsEmergencyDroughtiWater Propor tionsForNenEmergencyDroughtallocationsByUser [“Municipalities” ,]]

“Proporton”
*NaNTozero (ReinqushedCreditsEmergencyDroughtiater Relnquishedcredts [])

image34.png
IsNaN RelinquishedCreditsEmergencyDroughtiater MRGCDDroughtAllocation []
AND sNa RelncuishedCreditsEmergencyDroughtiater.Suppementaisalocaton)
AND IsNaN RelinquishedCreditsEmer gencyDroughtiater Muricpaltesalocation []

image1.png

image2.png

